Отдел продаж Интернет Магазина: 8-809-505-4295
+7 (384-2) 599-222 - отдел рознично-оптовых продаж.
650070 г. Кемерово, ул. Свободы, дом 15.

Наши основные направления
ООО «Компания Байт»
Россия, г. Кемерово, ул. Свободы, д. 15
+7 (384-2) 599-222
http://byte-kuzbass.ru/

«Система Скидок» «Почему мы?» «О нас»
НАШ КУРС: 75 за 1$

Поиск по сайту

Корзина

 x 
Корзина пуста

Пожарная и охранная сигнализация

  • Примеры организации WI-FI соединений
  • Выбор радиостанции
  • Дополнительный матерьял
  • Теория и термины
  • Двухсторонний Спутниковый Интернет
  • Обратная связь
  • Станции VSAT
  • Домофоны и видеодомофоны
  • Cистемы сигнализации и связи для больниц
  • Информация о GPS трекерах
  • Отзывы
  • Граббинг интернет потока
  • ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
  • Разное
  • ОБОРУДОВАНИЕ
  • ОБЛАСТЬ ПРИМЕНЕНИЯ
  • ОСНОВНЫЕ ПРЕИМУЩЕСТВА
  • ТЕХНОЛОГИЯ
  • Дополнительные услуги
  • Цены и Коммерческое предложение по Двухстороннему интернету
  • Антенны для абонентских спутниковых терминалов
  • Модемы
  • Платформа HN
  • Какое бывает Телевидение
  • HDTV
  • Способы приёма
  • Спутниковый Интернет
  • Спутниковое ТВ
  • Сети кабельные, оптические, спутниковые, WiFi, WiMAX
  • Видеонаблюдение и контроль доступа
  • Радиостанции, рации
  • Спутниковые телефоны и связь
  • Пожарная и охранная сигнализация
  • Мини АТС и Телефония
  • GSM ретранслятор, блокирование, терминалы, Антенные Усилители
  • Корпоративная безопасность
  • Создание и продвижение веб сайтов
  • Умный дом
  • Статьи
  • Устройства и программы записи телефонных разговоров SpRecord.
  • Предоставляем Хостинг
  • Заказ услуги хостинга
  • Тарифы Хостинга

  • Вы здесь: ГлавнаяСтатьиНовейшее поколение пожарных извещателей: аспирационные извещатели

    Официальный сайт по услуге Видео Наблюдение: ВидеоНаблюдениеКемерово.РФ. Компания Байт официальный установщик Видео Наблюдение в Кемерово, официальный дилер Видео Наблюдение в Кемерово.

    В последнее время аспирационные дымовые пожарные извещатели применяются все шире для защиты наиболее важных объектов и помещений как, например, вычислительные центры, пульты управления или коммутаторные помещения электронных узлов связи, крупные музеи, банки и т. д. Там, где ущерб от потери информации в случае пожара несоизмеримо больше стоимости утраченного оборудования и мебели, а также может привести к большим человеческим жертвам. Сверхраннее обнаружение пожароопасной ситуации обеспечивается принудительным отбором воздуха из контролируемого помещения и использованием ультрачувствительных дымовых лазерных адресно-аналоговых дымовых пожарных извещателей. Доступная цена аспирационных извещателей последнего поколения позволяет использовать их даже на малобюджетных объектах, там, где требования повышенной противопожарной защиты ранее не обеспечивались из-за недостатка средств, выделяемых на эти цели.

    Устройство и принцип действия

    Аспирационный дымовой пожарный извещатель состоит из системы трубок с отверстиями для забора воздуха и центрального блока, с вентилятором для обеспечения потока воздуха и лазерным дымовым пожарным извещателем. Определим различие в процессах дымоопределения при использовании аспирационного извещателя и точечного дымового извещателя.

    1. Принудительный отбор воздуха из контролируемого помещения и естественное поступление дыма в пожарный извещатель

    По НПБ 65-97 «Извещатели пожарные дымовые оптико-электронные. Общие технические требования. Методы испытаний» чувствительность порогового дымового ПИ должна выбираться из диапазона удельной оптической плотности среды 0,05 — 0,2 дБ/м. Контроль чувствительности производится в аэродинамической трубе замкнутого типа, где через извещатель проходит воздух с аэрозолью (НПБ 65-97 Приложение 1). В то же время, по ГОСТ Р 50898-96 «Извещатели пожарные. Огневые испытания» при испытаниях по тестовым очагам в помещении допускается активизация извещателя при удельной оптической плотности 2 дБ/м, т.е. в 10 раз большей. По результатам испытаний ПИ, выдержавшие испытания делятся на три класса: А — чувствительность выше 0,5 дБ/м, класс В – чувствительность от 0,5 до 1 дБ/м, класс С – от 1 до 2 дБ/м. И противоречия здесь нет: в отличии от испытаний в дымовом канале, где в месте расположения ПИ скорость потока увеличивается и возникает турбулентность. В испытательном помещении по ГОСТ Р 50898-96 размером 10 м х 7 м и высотой 4 метра сказывается аэродинамическое сопротивление дымового ПИ. Неудачная конструкция корпуса ПИ и дымовой камеры, относительно низкая площадь дымозахода по сравнению с внутренним объемом ПИ могут привести к снижению чувствительности в реальных условиях более чем в 10 раз. В той или иной степени этот эффект проявляется у любого точечного дымового извещателя с дымовой камерой и с конструктивными элементами для защиты от пыли. Этим и объясняется расхождение требований по НПБ 65-97 и по ГОСТ Р 50898-96. Таким образом, отбор воздуха через трубку при помощи вентилятора в несколько раз повышает реальную чувствительность системы.

    2. Лазерный и светодиодный дымовой извещатель

    В дымовых оптико-электронных пожарных извещателях при помощи фотодиода измеряется уровень, отраженного от частиц дыма, света. Обычно в качестве источника излучения используется светодиод, что и определяет потенциальную чувствительность дымового ПИ. Для повышения чувствительности необходимо увеличивать яркость излучения, а это приводит к увеличению фонового сигнала, отраженного от стенок дымовой камеры, который, к тому же, повышается при их запылении. В лазерном извещателе, как следует из названия, в качестве излучателя используется миниатюрный лазер.

    Яркость излучения лазера примерно на два порядка выше, чем у светодиода, а фокусировка луча обеспечивает практически полное отсутствие отражений от стенок дымовой камеры. В результате, лазерный извещатель обеспечивает обнаружение задымления на уровнях удельной оптической плотности примерно в 100 раз меньших, чем современные светодиодные пороговые ПИ.

    3. Нескольких дымозаходных отверстий у аспирационного извещателя и несколько точечных дымовых извещателей в одном помещении

    На начальном этапе возгорания плотность дыма, поступающего в одно из отверстий будет снижаться за счет поступления чистого воздуха через другие отверстия. Кроме того, для обеспечения равномерного поступления воздуха через различные отверстия на конце трубки устанавливается заглушка с дополнительным отверстием, диаметр которого примерно в два раза превышает диаметр рабочих воздухозаборных отверстий. Таким образом, оптическая плотность может максимально снизиться примерно в 10 раз, но выигрыш от отсутствия аэродинамического сопротивления и за счет использования лазерного извещателя позволяют достичь качественно новых уровней чувствительности. Например, лазерный дымовой извещатель уверенно реагирует на дым с удельной оптической плотностью менее 0,065 %/м, что примерно равно 0,0028 дБ/м. С учетом эффекта снижения оптической плотности, исходное значение удельной оптической плотности дыма, поступающее через одно из воздухозаборных отверстий, должно быть на уровне 0,028 дБ/м. Таким образом, в наихудшем случае, имеем превышение по чувствительности по сравнению с самым чувствительным классом А точечных дымовых извещателей примерно в 20 раз, а по сравнению с со средним классом В, к которому обычно относятся пороговые оптико-электронные ПИ, примерно в 40 раз. Однако рассмотренный случай является «идеальным», т.к. через другие отверстия трубки, расположенные в этом же помещении будет так же поступать дым пусть с несколько меньшей плотностью. Это эффект усиливается с ростом высоты помещения: дым от очага возгорания распределяется на больший объем, снижается его удельная плотность, но при этом он поступает через большее количество отверстий.

    В случае же использования точечных дымовых извещателей для компенсации снижения удельной оптической плотности используется их более частое размещение.

    Практическая реализация

    Существует несколько моделей аспирационного извещателя:

    Одноканальный извещатель, которому подводится одна воздухозаборная трубка, в центральном блоке один или два лазерных извещателя. Также сеть двухканальная модель — извещатель, к которому подводятся две воздухозаборных трубки, в центральном блоке два лазерных извещателя, каждый из которых расположен отдельном отсеке, что увеличивает в два раза защищаемую площадь.

    На входе в центральный блок установлены воздушные фильтры, очищающие поступающий воздух от пыли. Эти фильтры размещены в съемных прозрачных картриджах, что значительно упрощает контроль их состояния и техническое обслуживание. Вся информация о состоянии контролируемого помещения и самой системы отображается на легко читаемых светодиодных индикаторах и может передаваться через порт RS232, для анализа событий или тенденций за определенный временной промежуток.

    Аспирационный извещатель позволяет организовать циркуляцию воздуха по замкнутому циклу. В зависимости от условий эксплуатации могут использоваться воздухозаборные трубки из АВС или UPVC пластика, меди, нержавеющей стали. Внутренний диаметр трубки 20 мм. При необходимости допускается укоротить трубку исходя из размеров помещения. В стандартной конфигурации забор воздуха производится через отверстия диаметром 3 мм, направленные вниз для обеспечения свободного дымозахода. При наличии подвесного потолка основная трубка наращивается капиллярными трубками.

    Конец воздухозаборной трубки должен быть обязательно закрыт заглушкой с отверстием диаметром 6 мм для обеспечения равномерного поступления воздуха через различные отверстия. При отсутствии заглушки воздух будет поступать через торцевое отверстие диаметром 20 мм, а не через дымозаходные отверстия, т.к. они имеют значительно меньшие размеры. Если полностью закрыть торцевое отверстие трубки, то большая объем поступающего воздуха будет снижаться с удалением отверстия от центрального блока. Для выполнения изгибов используются два типа уголков для отклонения трубки на 45° и на 90°.

    Таким образом, с использованием сравнительно недорогих аспирационных пожарных извещателей появляется возможность фиксировать пожароопасную ситуацию на сверхранних этапах, что, при своевременном реагировании на предварительные сигналы, обеспечивает минимальные материальные потери от возгорания, не требуется проведение эвакуации людей и прерывания рабочего процесса и т.д.

    Автор: Неплохов И.Г., к.т.н., эксперт, компания System Sensor